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Detrended fluctuation analysis �DFA� is a useful tool to measure the long-range power-law correlations in
1 / f noise. In this paper, we investigate the power-law dynamics behavior of the density fluctuation time series
generated by the famous Kerner-Klenov-Wolf cellular automata model in road traffic. Then the complexities of
spatiotemporal, average speed, and the average density have been analyzed in detail. By introducing the DFA
method, our main observation is that the free flow and wide moving jam phases correspond to the long-range
anticorrelations. On the contrary, at the synchronized flow phase, the long-range correlated property is
observed.
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INTRODUCTION

Traffic flow phenomena have attracted the interest of
physicists since the early 1990s. How to accurately and re-
alistically predict road traffic flow has become a hot topic in
traffic works. Additionally, many traffic phenomena on the
roads are complex and nonlinear, such as cluster formation,
huge fluctuations, long-range dependencies, and so on. Thus,
traffic models are developed to get a better understanding of
these phenomena and how to avoid some problems caused
by traffic congestion.

This paper is devoted to a theoretical analysis of the time
scale of fluctuations in traffic flow. In 1976, Mush and Higu-
chi �1� found 1 / f fluctuations in empirical data measured in
traffic flow. There are many theoretical studies of fluctua-
tions in traffic flow, which try to explain Mush and Higuchi’s
results as well as other empirical results about traffic flow
fluctuations �see �2–7�, and references therein�. All these the-
oretical studies have been made in the context of the so-
called fundamental diagram approach to traffic flow theory.
However, as explained in �8� based on empirical analyses of
spatiotemporal measured traffic data, this approach as well as
related traffic flow models used in �2–7� cannot show and
predict traffic breakdown and many important empirical fea-
tures of resulting spatiotemporal congested patterns. For this
reason, in a theoretical analysis of large time-scale fluctua-
tions in traffic flow presented in this paper we use the
Kerner-Klenov-Wolf �KKW� cellular automata �CA� traffic
flow model in the framework of Kerner’s three-phase traffic
theory that explains and predicts empirical traffic breakdown
and resulting congested patterns observed in real traffic. In
this theory, there are three traffic phases: free flow, synchro-
nized flow, and wide moving jams. As shown in �8�, phase
transitions between these phases determine the complexity of
empirical spatiotemporal phenomena in real traffic. Thus we
can expect that qualitatively different time scales of fluctua-
tions should be associated with the three traffic phases.

Long-range correlated time series have been widely used
for the theoretical description of diverse phenomena. There

exist three long-range correlated processes including antiper-
sistent, persistent, and ordinary diffusion. An antipersistent
long-range correlated process shows that a step in one direc-
tion is preferentially followed by a reversal of direction. A
persistent long-range correlated process indicates that a step
in one direction is preferentially followed by another step in
the same direction. While in the ordinary diffusion �random
walk� process, each step is independent of its preceding one
�9�.

Indeed, the existence of power-law fluctuations in traffic
flow has been discussed previously ��6,7�, and references
therein�, which can be used to characterize the complex ar-
chitectures of vehicle traffic. As mentioned above, the com-
plex behaviors in the different traffic phases, such as the free
flow phase, the synchronized flow phase, and the wide mov-
ing jam phase, also remain unknown. Therefore, the purpose
of this paper is to investigate the large time-scale behavior of
road traffic. We analyze the traffic flow under different den-
sities and observe the density fluctuation characteristic by
introducing the KKW model. Applying the detrended fluc-
tuation analysis �DFA� method, we discuss the long-range
correlated property hidden in this raw data of the traffic flow.

The paper is organized as follows. In Sec. II, we describe
the method of detrended fluctuation analysis. In Sec. III, we
review the KKW–1 cellular automata model. Simulation re-
sults are given in Sec. IV and a conclusion is offered in Sec.
V.

DETRENDED FLUCTUATION ANALYSIS

Due to strong interactions among elements in the complex
systems, long-range spatial and/or temporal correlations are
often generated. These systems are then referred to as scale-
free. An important feature of such systems is the power-law
scaling behavior, which indicates the rather robust or univer-
sal properties �10�.

DFA is a well-established method for determining data
scaling behavior in the presence of possible trends without
knowing their origin and shape �11,12�. Therefore, it is one
of the methods used for analyzing a nonstationary time series
with power-law properties. It was first developed for analyz-
ing the long-range correlation in deoxyribonucleic acid se-
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quences. Moreover, long-range correlation processes present
very long-term fluctuations in addition to very short-term
fluctuations, where the dependence of data farther apart is
higher than is expected for independent data �13�. DFA
avoids the spurious detection of correlations that are artifacts
of nonstationarity which often affects experimental data.
Such trends have to be well distinguished from the intrinsic
fluctuations of the system in order to find the correct scaling
behavior of the fluctuations. Very often the reasons for un-
derlying trends in collected data are unknown and the scales
of the underlying trends are also unknown.

The simplest form of the DFA method is described as
follows. The methodology operates on the time series �h�t��,
t=1,2 , . . . ,T, where T is the length of the time series. First
the profile y�t� of the time series is defined as the accumu-
lated deviation from the mean,

y�t� = �
i=1

t

�h�i� − �h	� , �1�

where �h	=T−1�t=1
T h�t� is the mean value of the time series

�h�t��.
Then, the entire time series of the profile y�t� of length T

is divided into int�T / l� nonoverlapping segments of equal
length l. The local trend ỹm�t� in the mth segment is defined
by fitting the raw profile y�t� in the segment. Here we em-
ploy the first order DFA method, where the linear least
square method is used to fit the profile y�t�.

The detrended profile yl�t� is defined as the deviation of
the original profile y�t� from the local trend ỹm�t�, then if
ml� t� �m+1�l, we can derive

yl�t� = y�t� − ỹm�t� . �2�

Thus, the standard deviation of the detrended series is de-
fined as the mean square of the detrended profile,

F2�l� = T−1�
t=1

T

yl
2�t� . �3�

By analyzing the dependence of the standard deviation
F�l� on the segment length l, we find the long-range correla-
tion in the nonstationary time sequences. If the standard de-
viation F�l� behaves as a power of the segment length l,
F�l�
 l�. If 0���0.5, h�t� is long-range anticorrelated; if
0.5���1.0, it is called long-range correlated. �=0.5 cor-
responds to the Gaussian white noise, while �=1.0 indicates
the 1 / f noise.

KKW–1 CELLULAR AUTOMATA MODEL

Cellular automata are agent-based simulations for com-
plex natural systems containing large numbers of simple
identical components which interact locally. Recently,
Kerner found that there are two different phases in congested
traffic: synchronized flow and wide moving jam �14�. This
distinguishment is based on the qualitatively different em-
pirical spatiotemporal features of these phases. Thus, there
are three traffic phases in the real traffic phenomena: �1� free
flow; �2� synchronized flow; and �3� wide moving jam.

In order to explain these three phases, Kerner introduced a
three-phase traffic theory �14�. One of the microscopic traffic
flow models in the framework of Kerner’s three-phase traffic
theory is a cellular automata three-phase traffic flow model
first proposed by Kerner, Klenov, and Wolf called the KKW
CA model �15�. Because the KKW CA model can explain
and predict measured spatiotemporal features of phase tran-
sitions and resulting congestion patterns, we use the simula-
tion results obtained by the KKW-1 CA model for our analy-
sis of the density fluctuation time series. The basic updated
rules of the KKW-1 CA model including the deterministic
part and the stochastic part are as follows �15�:

�1� Deterministic rule �t� t1� t+1�

vn�t1� = maxˆ0,min�vmax,vs,n�t�,vdes�t��‰ , �4�

where vn and vmax are the speed of nth car and the maximum
speed of the vehicles. vs,n=dn /� is the safe speed which must
not be exceeded in order to avoid collisions �� is the time
discretization interval� and depends on the space gap be-
tween vehicles, dn=xj,n−xn−g. The lower index j marks
functions �or values� related to the vehicle in front of the one
at xn, the “leading vehicle,” and g is the vehicle length �as-
sumed to be the same for all vehicles in this paper�. xn de-
notes the position of vehicle n. vdes�t� is the expected speed
at time t calculated by the following equation:

vdes�t� = �vn�t� + �� case 1 �5�
vn�t� + ��� case 2, �5��

where �=sgn�vn+1�t�−vn�t��, and case 1 and case 2 refer to
dn�D�vn�t��−g and dn�D�vn�t��−g, respectively. The
function sgn�	� is 1 for 	�0,0 for 	=0, and −1 for 	�0.
The vehicle will accelerate with � when case 1 is satisfied.
D�v� denotes the synchronization distance calculated by
D�v�=D0+kvt, where D0 and k are constants. This rule de-
couples speed and gaps between vehicles for dense traffic.

�2� Stochastic rule

vn+1�t� = maxˆ0,min�vn�t1� + ��
n,vn�t1� + ��,vmax,vs,n�t��‰ .
�6�

The randomness item 
n is


n = �− 1 if rand� � � pb �7�
1 if pb � rand� � � pb + pa �7��
0 otherwise, �7��

where pb and pa are the probability of deceleration and ac-
celeration determined by the current speed, respectively
�pa+ pb�1�.

pb�vn� = �p0 if vn = 0 �8�
� if vn � 0, �8��

where � and p0 are constants �p0���.

pa�vn� = �pa1 if vn � v� �9�
pa2 if vn � v�, �9��

where v�, pa1, and pa2 are constants �pa1� pa2�. rand� � is a
random number uniformly distributed between 0 and 1. By
setting the observing point in the road, we can calculate the
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average vehicle density h̄ defined as the average speed di-
vided by the total number of vehicles across the observing
point. A detailed description and simulation condition can be
found in the literature �15�. Additionally, the updated rule of
vehicle position is

xn+1 = xn + vn+1�t + 1�� . �10�

SIMULATION RESULTS

In the KKW-1 CA model, the length of the cell is 0.5 m,
the length of the road L is 30 000 m, each vehicle occupies
15 cells �g=0.515=7.5 m�, and the maximum speed is
vmax=108 km /h=60 cells /s. The parameters k=2.55, �=1,
vp=50.4 km /h, �=0.04, pa1=0.2, and pa2=0.052, �
=0.5 m /s2 are given. Other parameters and variables are
similar to the literature �15�. There is no on-ramp on the
road, and the simulation is performed under periodic condi-
tions. As the initial state, the positions of the vehicles are
randomly chosen. The data is averaged over a one-minute
time period in the paper. In order to analyze the results, the
first 10 000 time steps of the simulation are discarded to let
transients die out and the system reach its steady state. As-
suming that the traffic is also considered to be homogeneous,
all vehicle characteristics are assumed to be the same.

The spatiotemporal diagram is a graph that describes the
relationship between the location of vehicles in a traffic
stream and the time as the vehicles progress along the high-
way. Here, we give the spatiotemporal graph including free
flow �p=0.1�, synchronized traffic flow �p=0.2�, and wide
moving jam �p=0.32� in Fig. 1. The time and space axes are
oriented from left to right, and top to bottom, respectively.
Each dot corresponds to a vehicle at a given time step. One
can observe that, for the low density �e.g., p=0.1�, vehicles
will arrive at the stable free flow states. With the increase of
density, e.g., p=0.2, the synchronized flow traffic phases can

be seen where the vehicle speed is lower than vmax.
In general, traffic jams are characterized by a high local

density and the low speed of the vehicles. From the view of
observation, the wide moving jam is a localized structure
moving upstream and is limited by two fronts where the
vehicle speed changes sharply, i.e., within a region that is
small compared to the distance between the fronts, while for
the synchronized flow, the downstream front is usually fixed
at the bottleneck, where it occurred. In particular, wide mov-
ing jams do not occur spontaneously, if the initial state with
maximal vehicle speed v=vmax lies within the range of flow
rates, where the maximal speed can be maintained �16�.
Once the density is above a threshold for the moving jam
formation, we can see the emergence of wide moving jams
�p=0.32�. At last, a wide congested band is formed. From
Fig. 1, associated with p=0.32, we can see a backward
movement of shock waves caused by the traffic jam.

Figure 2 shows the average speed for different densities
p=0.1 �free flow�, p=0.2 �synchronized flow�, and p=0.32
�wide moving jam� by collecting the data from a virtual de-
tector. Here, one minute averaged data is used. As can be
seen, the average speed of free flow is steady and almost no
fluctuations are observed. However, with the increase of den-
sity, the fluctuations of average speed become more and
more obvious, which indicates the inhomogenous traffic in
the system.

The next step is to analyze the time series of average
density p̄ obtained by setting the virtual detector in the road
with different vehicle densities p=0.05, p=0.1, p=0.2, and
p=0.32. As mentioned above, these density ranges corre-
spond to the free flow �p=0.05 and p=0.1�, synchronized
flow �p=0.2�, and wide moving jams �p=0.32� especially.
Then, we report the time series of the density fluctuation
curves in Fig. 3. One can see that, for a small p value, the
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FIG. 1. �Color online� The spatiotemporal graph of free flow,
synchronized flow, and wide moving jam on a homogeneous one
lane road with periodic boundary conditions for the KKW–1 model.
Free flow traffic phase is related to p=0.1, synchronized flow traffic
phase is related to p=0.2, and wide moving jam traffic phase is
related to p=0.32.
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FIG. 2. �Color online� The average speed of free flow, synchro-
nized flow, and wide moving jam on a homogeneous one lane road
with periodic boundary conditions for the KKW–1 model. One
minute averaged data of a virtual detector whose coordinates are
indicated in the figure. Free flow traffic phase is related to p=0.1,
synchronized flow traffic phase is related to p=0.2, and wide mov-
ing jam traffic phase is related to p=0.32.
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average density p̄ fluctuates around an average value. In ad-
dition, the fluctuations are short ranged and small, which
indicates short-range correlation; that is, the state of the sys-
tem at a certain time step has very little effect on the state of
the system a few time steps apart.

In Fig. 4, the DFA function calculated with h�t� is dis-
played on a log-log scale. Clearly, the standard deviation Fl
by using DFA on time series h�t� exhibits the power-law
form, and the exponent � in the free flow phase �p=0.05� is
about 0.2621, while in the free flow phase related to p=0.1,
the exponent � is about 0.3825. When p=0.2 and p=0.32,
the phases of synchronized flow and wide moving jam will
be displayed. Obviously, the power-law behaviors with one
about �0.6513 for synchronized flow and another about
�0.4553 for wide moving jam can be seen in Fig. 4. The
calculated � value implies the long-range correlation for syn-
chronized flow. However, for the free flow and wide moving
jam, the scaling exponents calculated with DFA are long-

range and anticorrelated. The figure shows that the power-
law behavior is really seen in the traffic system. In other
words, long-range correlations in the traffic density fluctua-
tion persist in the synchronized flow and are destroyed in the
free flow and wide moving jam phases.

To study the correlated characteristics of density fluctua-
tion in different cases, we give the relationship between the
scaling exponent � and the vehicle density p in Fig. 5. Next,
we show some critical results of the simulations. This dia-
gram represents the fluctuation properties of the traffic flow
as a function of density. It is clear that the diagram is divided
into two parts by the black real line, long-range anticorre-
lated area under the line and long-range correlated area
above the line. Additionally, two characteristic densities p,
e.g., pc1 and pc2, can be found. For p� pc1 and p� pc2, the
exponent � lies in the long-range anticorrelated area. In the
contrary, the long-range correlated property is displayed
when pc1� p� pc2. As shown in Fig. 5, the exponent � ex-
hibits approximately the Possion distribution. Both smaller
and larger density, e.g., p�0.145 and p�0.3, the calculated
exponent � shows that the raw data is long-range anticorre-
lated. However, when 0.145� p�0.3, the long-range corre-
lated behavior can be seen from the diagram.

CONCLUSION

In the empirical paper by Mush and Higuchi �1� in which
1 / f noise in traffic flow has been observed, no spatiotempo-
ral characteristics of traffic have been presented. Thus, based
on Mush and Higuchi’s analysis it is not possible to under-
stand which traffic phase�s� is �are� responsible for 1 / f noise.
In this paper, we analyze the long-range correlation of den-
sity fluctuation in the KKW cellular automata three-phase
traffic flow model by using the DFA method. It is found that
the calculated � value implies the long-range correlation for
synchronized flow. However, for the free flow and wide
moving jam associated with the density p=0.32, the scaling
exponent calculated with DFA shows the long-range anticor-
related behavior. Additionally, an interesting observation is
that there exists a region of density pc1� p� pc2 in which the
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FIG. 3. �Color online� The time series of average density in the
observing point for different initial vehicle densities: �a� free flow
p=0.05; �b� free flow p=0.1; �c� synchronized flow p=0.2; and �d�
wide moving jams p=0.32.
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time series are long-range correlated. We note, an empirical
study of fluctuations in different traffic phases, i.e., sepa-
rately in free flow, synchronized flow, and wide moving jam,
could be an important task of further investigations.
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